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Special attention is currently being given to the study of systems formed by 
relatively large molecules (molecular liquids, liquid crystals, polymer solutions, 
etc.) in connection with different applications. A phenomenological approach 
proves inadequate in these cases: the nonlinear governing equations of the 
system are ambiguous and, no less important, the relationship between macroscopic 
effects and the internal characteristics of the system remains unclear. These 
questions are also studied by another approach, in which the structural units of 
the system are replaced by a suitable model. As is known, the simplest model 
of a macromolecule being deformed is a dumbbell - a relaxation oscillator with 
two centers of friction coupled by an elastic force. Such a model makes it 
possible to describe the basic features of the nonlinear behavior of polymer 
solutions [i, 2]. The goal of the present work is to derive governing equations 
with allowance for the hydrodynamic interaction of the friction centers of the 
relaxation oscillators. This approach leads to the most general form of governing 
equation of a dilute polymer solution, while allowance for hydrodynamic interaction 
leads to the discovery of new effects in the study of simple shear flow. For 
example, the second difference of the normal stresses is nontrivial. 

i. Dynamics of a Relaxation Oscillator in a Flow. We will examine the behavior of a 
macromolecule represented by a dumbbell -- two Brownian particles with the coordinates r', r" 
and velocities w', w" coupled by elastic forces and located in a flow of a viscous fluid 
with an asymptotically prescribed velocity gradient vij. 

The first particle, with the radius vector r', is acted upon by the elastic force 

- 2 T ~ ( r '  - r") ( 1 . 1 )  

(T is the temperature), the hydrodynamic resistance 

the force associated with internal viscosity, which according to Kuhn [i] has the form 

" . .  , ,  , , r i . . . . .  r i 

%e,e.i (Wj - -  w j ) ,  e t - -  ~ ( i .  3 )  

and a random force expressed through the distribution function W(r', r", t), 

- T  OlnW ( 1 . 4 )  
o~j " 

If we interchange the superscripts ' and " in the above expressions, we obtain ex- 
pressions for the forces acting on the second particle. 

When the mutual effect of the spheres of the dumbbell is slight, the matrix of hydro- 
dynamic resistance B~ can be written [3] in the Ozeen approximation 
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B~] = B~) t - -  ( l  - - L ~ )  (1 - -  4L ~) e ie j  '~ '  ~ (1 -{- L ~) ~ij + 3~L~'e~ej, 
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where ~ = 6~Rq0 is the friction coefficient of a sphere of radius R in a liquid with the 
shear viscosity coefficient ~0; 

L = "$ 3R a << 1. 
8 a % l r " - - r ' { -  4 { r " - - r ' l  = { r " - - r ' l  

Forces (1.1-1.4) determine the motion of the dumbbell in the fluid flow. 

It is now convenient to introduce the coordinates and velocities 

t tt 

, o  = ~,~ + w~), i t  t 

Without allowance for inertial forces - which are small in the case being examined - 
the equations of motion of the relaxation oscillator (dumbbell) have the following form in 
the new coordinates 

-- 4Tvp~ -- --~i [V~ -- ~i + v~ --  ~- ~ In W = 0. 

Equations (1.5-1.6) describe the rate of diffusion of the center of mass ~0 and the 
rate of diffusion of the spheres of the dumbbell relative to each other ~. 

To within second-order terms for L, the following equation, obtained from Eqs. (1.5) 
and (1.6), describes ~i 

T)~ eicjV j In W ( 1 . 7 )  ~i = v,Pl - -  "~" Vi In W --  ~ + ~ vjzele3o i + ~ (;~i+ ~) 

__ )~4T~{ p, + T~ V~ in W + 21~L O~ -}- ~)2 vjtetejpi + ALe~ejVj In W + 

8 7 ~  L 4~ ~ 2 - -  4~T ~6T~t~ + ~ p~ + ~ L ~le~e~p i + ~ L~eie~V~ln W + ~ L2pc 

H e r e  
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a A T. V i = ~; ----- 

Now the equation for the distribution function W(O, 

ow o (%w) O. 
o-7 + 00"--"-7- 

t) [4] has the form 

(1.8) 

To within second-order terms for the velocity gradients and first-order terms for 
y-l = ~/X, the following function is obtained as the solution of Eq. (1.8) in the steady- 
state case 

,_(• 
- " 2 

where ~ = ~/(6T~); ~s ms are symmetrical and antisymmetrical tensors of the velocity 

gradients. 

We now need to know the moments of the distribution function, such as the second-order 
moments 

<PiP~> = ; W (p, t) PiP~ {dp},. 
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through which we express the macroscopic properties of the system. 

2. Governing Equations. The stress tensor of the suspension of Brownian particles 
Oik being examined is expressed through the moments of the distribution function as follows 
[4]: 

(n is the density of the number of macromolecules). 

This expression must be augmented by the stress tensor of the carrying medium 

(2.1) 

o~, = p~ + 2 q e ~ ,  " 

where p0 is the partial pressure of the solvent; ~e is the viscosity coefficient of the 
c a r r y i n g  medium. 

Using the expression for the elative rate of diffusion of particles of the relaxation 
oscillator (1.7) and performing the necessary transformation, we find the following ex- 
pression, accurate to within the second-order terms for 

~ri~ = --  nT6~ + -~-n~ <PiP~> --  <eie~>+ T ,=zT.. l<e~e~) - - ~ 5 ~  + v-v-, <9~PZZ~>?# + ( 2 . 2 )  

+ naL " ~-i  1 +  \ \ - ~ /  + - - - -  [ 4;k z 
vm~ < eieheme/> - -  

.1 

Here, ~ and T' = [ (% + 5)/5]T are characteristic times of the relaxation processes. 

To find an equation for the moments, we multiply (1.8) by PiPk and integrate over all 
of the variables with allowance for (1.7) to obtain 

d<PiPh.)  "l 3 ( | ) t ( 3 ) ~ - 
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When the characteristic times of motion are significantly greater than the relaxation 
times, the stress tensor (2.2), with allowance for (2.3), takes the following form 

I o~ .= --  nT~i~ + y n ~  [v~j <PjPh> + v.~j <pjpi>] ( 2 . 4 )  

" ~ \ ' - p /  + " U ' \ - ~ /  +~-'~ +~"+'l~l \ " - ~ / ' .  i - -~(Plehete")?tm + n~a2 4(l+?)z?mt<eie'heie,~> 

3 
+ 4 (i V,- . ,  vmz <ebenezer> t v (1 + ? ~ ./eiek ~ 2 <eleh>] 

w v; 2 ~  (t + v) 3 \ - ~ - / +  ; (l + v) - - - - - - ~ '  , ,  

C a l c u l a t i n g  t h e  moments i n  Eq. ( 2 . 4 )  w i t h  t h e  n e c e s s a r y  a c c u r a c y  and u s i n g  t h e  above 
form of the function W0(p) , we find the stress tensor to within second-order terms for the 
velocity gradients and a: 

thk = --  nTS~h + "T n~. ~. ?t~ + "c (v~f~j k + v~j?j~) "7-if" ( 2 . 5 )  

415 



2Z, 1 "  
"[" ~ ~'~- Oitt'~m~m! q" 437-l'~if~tk "t" ~)ikVmt~mt dr ~kmVmi q'- "~imVrak n u ~kl'~li "Jr 

Besides the symmetrized tensor, the antisynmletrized tensor also determines the stress 
tensor due to the presence of internal parameters - the moments. 

3. Conclusion. Thus, the governing equations of a dilute polymer solution consist of 
the stress tensor (2.1) and the system of equations for the moments. We should point out 
that, considering the internal viscosity of the macromolecules and the mutual hydrodynamic 
effect of the molecules, the governing equations do not constitute a closed system in the 
case of an arbitrary flow: the lowest-order moments are expressed through higher-order 
moments. However, a different approximation, permitting closure of the system for the 
moments, may be possible, depending on the problem being examined. This realization pro- 
vides objective grounds for the argument that different governing equations exist for 
polymer solutions. 

We will examine a simple stationary shear flow v12 # 0. In contrast to the case studied 
in [4], allowance for hydrodynamic interaction and internal viscosity leads to a qualitatively 
new effect. In fact, using Eqs. (2.1) and (2.5), we write the shear stress and the difference 
in the normal stresses in the form 

%z--%8=2nT(~vn)2 l+lS(l+r)~ 5 ?-i +Tt~ ) (i~ I-~ ~?-J' 

from which it is evident that the additive terms in the expressions for the stresses in the 
suspension are determined by the parameters of internal viscosity 7 and hydrodynamic 
interaction a2v. The expression for the second difference in the normal stresses is of 
particular interest. This quantity is nontrivial only when internal viscosity and the 
anisotropy of the hydrodynamic interaction are nontrivial. Its measurement makes it 
possible to quantitatively evaluate the anisotropy of the interaction. The use of a more 
current model of the macromolecule - the subchain model, in which the macromolecule is 
modeled by a chain of many Brownian particles [5] - does not alter the conclusions reached 
here because each normal coordinate of the subchain model is equivalent to a dumbbell, the 
parameters of which are dependent on the number of the normal coordinate. 

Thus, it can be assumed that the form of the governing equations presented here is the 
most general form of these equations for dilute polymer solutions. There is one more 
significant factor to be considered for concentrated polymer solutions when formualting the 
governing equations: the interaction of the macromolecules within the framework of the 
relaxation oscillator model. 
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